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Abstract. We introduce a Brownian motion model for the parametric evolution of eigenstates of
a complex quantum system, modelled by a random matrix. The model is analogous to Dyson’s
model for the evolution of the eigenvalues. We use this approach to analyse correlation functions
describing the parameter dependence of diagonal and off-diagonal matrix elements of a generic
operater. In the case of diagonal matrix elements, we compare our resuits with a semiclassical
approach, which relates sums of matrix elements to periodic classical orbits. For systemns with
a chaotic classical limit, the semiclassical correlation function agrees exactly with the random
matrix theory.

1. Introduction

In this paper we consider the senmsitivity of the eigenstates of a Hamiltonian H(X)
to variations of a parameter X, using a random matrix model. We characterize the
parameter dependence of the eigenstates |¢, (X)) through statistics of the matrix elements
Usm (X', X) = (@0 (XM ¢, (X)), describing the overlap between eigenstates at X and those
at X. We calculate the mean value ([/,, (X", X)} of these overlap matrix elements and the
overlap probabilities Py, = {|U,, (X', X)|?); the angle brackets denote an average over the
random matrix ensemble. We use these statistics to analyse the parameter dependence of the
matrix elements Ay, (X) = (¢, (X)]Al¢n (X)} of an operator A which is independent of the
Hamiltonian. There are several physical problems for which it is important to understand
the parameter dependence of matrix elements of this type. One application is to the analysis
of the adiabatic form of the Schridinger equation, in which these mairix elements appear
f1]. Another application is to understanding fluctuations of transition strengths of atomic,
molecular, or mesoscopic systems as a parameter (such as an externally applied electric or
magnetic field) is. varied.

In commmon with other theories based on random matrix Hamiltonians, the results are
expected to apply to ‘real’ quantum systems which have no symmetries or constants of
motion: random mtatrix models have been very successful in describing complex nuclear
spectra [2], and systems with few degrees of freedom which have chaotic classical dynamics
[3]. As well as providing a good description of the statistical properties of the spectrum,
random matrix models can also describe the parametric dependence of energy levels [4].
This is important in analysing the response of systems to large perturbations [5], and to
perturbations which induce a shift in the parameter as well as a transition between levels
{6]. We demonstrate the applicability of our random matrix results by comparing one of
our statistics with semiclassical results, for a system with a chaotic classical limit. Despite
the very different basis of the two approaches, the results agree exactly.
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The parameter dependence of the matrix elements A,, can be characterized by their
correlation functions: we will consider correlations of both diagonal and off-diagonal matrix
elements; ’

{Ann (X)An'n'(Xf)) (1.1a)
(Anm(X) A% (XD} (L1D)

The angle brackets denote an average over the random matrix ensemble; to apply the
results to specific quantum systems this average would be replaced by an average over
matrix elements for states with energies E,, E, close to a given energy E; we give an
example of such an average in (1.2) below.

It is difficult to calculate these correlation functions directly, using a model in which the
Hamiltonian depends smoothly on the parameter X. Instead, we will consider a Brownian
motion model, in which the Hamiltonian matrix evolves diffusively, as a function of a
fictitious time variable T. The Brownian motion model was invented by Dyson [7], and
used to study parameter dependencies in the spectra of random matrices by Beenakker and
Rejaei [8, 9]. In section 2 we discuss the relationship between the Brownian motion model!
and a smooth parametrization of the random matrix Hamiltonian.

The equations of motion of the energy levels in the Brownian motion model were
discussed by Dyson [7). In section 3 we give Langevin equations of motion for the
overlap matrix elements U,,,,, which are analogous 1o the Dyson mode] for the eigenvalues.
We discuss the solution of these equations of motion in section 4, and give results
for the averages of the elements U, and the overlap probabilities |/,,|? in the limit
where 7 is large. Qur results are complementary to some recent work by Kusnezov and
Lewenkopf [10]. They describe a considerably less general Brownian motion model] for the
wavefunctions which only treats the diagonal elements U, ;, but they also consider a variant
of the model in which the matrix elements undergo anomelous diffusion.

In section 5 we apply these results to the correlation functions (1.1). It is desirable to
check these predictions of random matrix theory against other approaches. In section 6 we
compare our results for the diagonal matrix elements with a semiclassical theory [11] for
the statistic

FE XY= Ambe(E— Ey) (1.2)

where 5.(x) is a ‘smoothed delta function’, i.e. a function supported on an interval of
length ¢ at x = 0, with unit weight (an example is &, (x)} = exp(—x2/2¢?)/e~/2x). This
statistic represents an average value of the diagonal matrix elements of A for states 1)
with energies within a tolerance ¢ of E. We find that the semiclassical and random matrix
theory predictions for the correlation function of f agree exactly. Section 7 contains some
concluding remarks.

2. Relationship between the parametrized Gaussian ensembles and the Dyson model

The natural model for arpalysing parameter-dependent quantities is the following
parametrization of the standard Gaussian ensembles [4]:

H(X)=cos XH, +sinXH; (2.1}
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where I;V] and ﬁg are independent samples from the same Gaussian symmetry-invariant
ensemble: the relevant symmetry classes are orthogonal, unitary, or symplectic [2, 12].
The dimension N of the matrices H; and Hz should be large. We will only discuss
the cases of the Gaussian unitary and orthogonal ensembles. In the case of the unitary
ensemble the Hamiltonian is a Hermitean mairix with elements of the real and imaginary
parts independently Gausstan distributed, satisfying

{Hyj) =0 (2.2)
and

(HijHi ) = Sindyy (HijHyj) = 8iy8p; . (2.3)
The elements of the orthogonal ensemble are real and (2.3) is rep]acs::d by

{HijHpj) = 808550 + 81805 . (2.4)

In this paper we will show that matrix elements decorrelate over a very short range of X; in
this case the periodicity of (2.1) in X is irrelevant, and the Hamiltonian can be approximated
by

BXy=H +XH,. (2.5)

Random matrix models provide a good statistical description of the spectrum of many
systems, after the energy levels are scaled to have the same density of states p as the random
matrix ensemble. When we extend the random matrix model to describe the parameter
dependence of energy levels, another scaling paramneter must be introduced to describe the
sensitivity of energy levels to a perturbation. The most natural choice [4] is the variance of
the off-diagonal matrix elements of Al JoX:

A
g (E)_()(ﬁ)m ).eE 2.6)
nEm

The mairix elements are evaluated in the eigenbasis of H, and only matrix elements for
which E, and E,, are close to the energy of interest are included in the average. it follows
from the invariance properties of the Gaussian ensembles that for our random matrix models
(2.1) or (2.5) we have £ = 1. The general definition of 12, and formulae for calculating it
in semiclassical systems, are discussed in [4, 13].

The X dependencies of the matrix elements A,,, obey a complex set of equations of
motion similar to those discussed by Pechukas [14]; the direct solution of these equations
is very difficult. Instead, we will relate the parameter dependence of the model (2.1) to that
of the ‘Brownian motion model’ discussed by Dyson [7], which is considerably simpler to
analyse. This cormrespondence was first discussed by Beenakker [8], who noted that if the
Brownian motion model and the smooth parametrization are to agree, the parameter X and
the time variable 7 must be related by X2 ~ 1 for small z. Our discussion below makes
the connection with (2.1) clearer, in that it shows that the relationship between X2 and 7 is
linear for all 7.

In the Dyson model, the matrix elements of the Hamiltonian undergo a diffusive
evolution as a function of a fictitious time variable z. In the unitary case the change
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8H;; in the elements of the random matrix Hamiltonian due to an infinitesimal increment
87 in the time variable satisfies

(SHjjtSH;j:) = Sj;lSjj-DBT {6Hjj8Hi'j’) = Sij'aijS‘r (2.7}

where D is a constant. The corresponding rule for the orthogonal case follows by analogy
with (2.3). The increment 5 is also assumed to be independent of the Hamiltonian H.
The invariance properties of the Gaussian invariant ensembles show that (2.7) remains true
when the matrix §H = {6H;;} is transformed to the eigenbasis of H we use the notation
§H;. (q&nlSH |@m} for these transformed matrix elements. In the version originally
formu]ated by Dyson, the mean value of §H;; is non-zero in order to ensure that the
matrix elements do not have a secular increase. The matrix element correlations which we
consider decay very rapidly, and we can ignore this refinement and write

(Hy) =0. (2.8)

The reader can verify that neglecting the mean value makes no difference to the correlation
functions which we calculate,

We will show explicitly that the dynamics of the deterministic model (2.1} and of the
stochastic model described by (2.7) and (2.8) are related if the increment of the fictitious
time variable is related to the parameter X by the relation

u>X*=Dr. (2.9

In order to clarify the connection between these two random matrix models, we introduce
a multidimensional version of (2.1), in which the parameter space is d dimensional, with
componemts X, Xa, ..., Xp; we will be concerned with the limit in which d 3> 1. We
consider the following generalization of (2.1);

H(X) ~——Zcos(~/" X)) Byt + sin(vdX) By . (2.10)

:—l

Note that both H(X) and 8H /8X; have the same statistical properties as (2.1). We will
contrast the behaviour of the elements of this Hamiltonian matrix along two different paths
in the multidimensional parameter space. One of these paths will be a random walk; along
this path the elements of the Hamiltonian matrix evolve diffusively, in exactly the same
manner as for the Brownian motion model. The second path is a straight line joining
the beginning and end points of this random walk. Along this path, the evolution of the
Hamiltonian matrix is smooth and deterministic, and is similar to (2.1).

First we consider the case of the random-walk path, in which for each time interval
87 we make a step of length £5X; along a randomly chosen axis (the ith, say). The
corresponding change in the Hamiltonian matrix is

= [—sin(VdX;} Bai_y + cos(vd X By X, . 211

¥ we take the magnitude of 8X; to be |8X;| = +/ Dét/u, it is clear that the statistical
properties of the increment (2.10) are identical to those of the Dyson model, specified by
(2.7) and (2.8). Furthermore, because the increments of the Hamiltonian in each of the
d different directions ate independent random matrices, the successive time steps become
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uncorrelated in the limit where 4 3> 1. In the limit where d is large, the evolution of the
Hamiltonian therefore corresponds to that of the Dyson model.

The random walk reaches a position X (t) after time 7. The Euclidean distance
travelled, R = | X/, satisfies {R?) = Dr/u?, and the probability distribution P[R]dR
of R is

PIR1dR = CR* ' exp(—du’R*/2D1)dR (2.12)

for some constant C. In the limit of large d, this distribution is very sharply peaked at
R = +/Dt/u, implying that although the direction travelled is random, the final distance
from the starting point has very small fluctuations.

We now consider an alternative path, in which the end point of the random walk is
reached by following a straight line, parametrized by a coordinate A: we write

X(A) = is 2.13)

where X () is the final position of the random walk at time 7, and 3 = X (z)/v Dr is a
vector which, in the limit 4 33 1, has a length which is aimost always very close to unity.
‘The Hamiltonian at coordinate A along this path is

d
Ho) = % 3 " cos(vdas) By + sin(vdrs) By ~ B + M H; (2.14)
=1 '

where in the second relation we assume that Ai+/d <« 1, and where

d
= 7 > By By =3 siHy (2.15)

=1 =1

are two independent GUE or GOE matrices with statistics specified by (2.2)42.4). Along the
straight line path parametrized by A, the model (2.10) is therefore equivalent to the smooth
parametrization, equation (2.5), provided that A+/d < 1. This model can be used to analyse
the decay of correlations if the support Ax of the correlation function satisfies AA/d < 1.
Our results will show that Arpu ~ 1: for the random matrix ensemble, p ~ /N and
t =1 [2], implying that we should choose N and d in (2.10) such that N 3> 4 > 1.

By considering the evolution of (2.10) along two different paths, we have shown
that the Brownian motion model is equivalent to the smoothly parametrized ensemble
when A = +/Dz. The correlation of a function in the smoothly parametrized model can
therefore be obtained from that in the Dyson model using (2.9), provided that the function
is independent of the path.

3. A Dyson model for the evolution of eigenstates
The eigenfunctions |¢,) of a chaotic system are very sensitive to variation of a parameter

in the Hamiltonian. The parameter dependence can be characterized by the set of Dirac
brackets

Unn(X', X} = (6 (XM (X)) . (3.1)
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The matrix U = {Uam} describes a change of basis, and is therefore unitary. We will
consider a model for which the correlation functions depend only upon the separation X — X/,
and consider only the case where X’ = Q. This is reasonable, because the comrelations of
functions decay very quickly.

We will derive a Brownian motion model for the overlaps {¢,(0)[¢n()}; results for a
smooth Hamiltonian can be obtained using (2.9). The chjective is to model the evolution
of the matrix elements Uy, as a function of = by a set of Langevin equations. The starting
point for deriving these equations is to apply Rayleigh—Schridinger perturbation theory to
second order. In the case of the energy levels this gives

SE , I |2 2
2(7) = Ex(t +87) — Ex(r) = 6 H,, + Z —+0CHY)  (32)
m;én

where §H!, = (¢s|6H |¢n); in the case of functions

SHY,
166(2)} = (7 + 8T)) — Ign (D) = 3 —2— | (7))

mn E E
el Ly ety
+:L‘;§ (Ep — En)(En — Ek)|¢m(r)} ;n( - )2|¢’m( ™))
SH.,
-3 (EI.—EI-.?E%(':)) +O@H?Y. 33)
k-’-n

The wavefunction remains normalized (up to second order in 8§ H”), and satisfies
(Pn(T)du ()} =0 3.4)
to lowest order. In the unitary case (3.4) can be seen as a connection rule [15] which
determines the phases of the states, given an arbitrary choice at v = 0; for the crthogonal
case the wavefunction is always real. Defining
AlUym (7)) = (s (7)) (T + 87))} (3.5)
we find that the overlap Uy, (7} = (¢n (0} ¢@x (7)) evolves as follows:

Un(z +87) = 3 Upe(®) A7) - (3.6)
k

The coefficients AUs, can be obtained from (3.3). The change in the overlap matrix element
Unm due to a perturbation of the Hamiltonian with elements § H,,, is therefore

Upm(T) = Unm(T + 87) — Upn(z) = Z Unk(TJ[AUkm(r) t Skm]
k
$H] SHySH; SH.,SHY,
= U, km 17 fim ]
2 "[Em —E; .Z (Em — E)(Em — Ey  (Bx— E,m

kstm
|5H;k12
m 37
U} Em B GD

Nﬂ‘-‘
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If the matrix elements 8 H, evolve diffusively according to (2.7) and (2.8}, equations (3.2)
and (3.7) can be replaced by Langevin equations. The Langevin equation corresponding to
(3.2) was discussed by Dyson [7]: the change in the energy level E, in time §7 is the sum
of a random impulse § F,, and a drift with velocity v,,

SE, =8F, + u,57. - T (B8)

The drift velocity is given by

uar»—(aE)—Zw—mrz—l—- (3.9)
nUt-— nl = - .
. mEn Ent“Em mEn E,— En o

and the random impuise §F, = H, satisfies
(8F,) =0 (§F2) = (8H™ ) =287 Déz (3.10)

(where 8 = 1 in the orthogonal case, 8 = 2 in the unitary case). The overlap matrix
elements satisfy a similar Langevin equation

8Uppm = 6 Fpp + VpmbT

3H,,
-—i:;unk g T (6Um) (3.11)

where the second line defines both the random impulse term and the drift velocities. The
Langevin equation is fully specified by calculating the drift term {(§U,,,) and the correlations
of the impulse terms, which are the same (to leading order in 4t) as the correlations of the
SU s

(8 FpmB Fymy) = (8Un8Upmy} + O(8T2) . (3.12)

We now consider the statistical properties of the elements §U,,, treating the unitary and
orthogonal cases separately. Using equations (2.7) and (2.8), and discarding all terms of
higher order than § "2, we find that the leading order contributions to the changes in the
matrix elements U/,, therefore have the following statistical properties:

8U, = —1DstU , 3.13
(Unn () = —§ DT nm#Zm(E -Ek)z (3.13)
1
(BUumdUy) = (1 — mi)DaTUutUkmm (3.14)
1
U800 = 8, DéT —: U 3.15
( nm k{) ! ;(EM_EJ.)Z ) ki ( )
(and the rhs. of (3.14) is zero when m = [). In the orthogonal case we write

O (T) = (@ (0)|dn(T)); the equation for {§Oy,} Is identical to the unitary case (3.13),
but the result for the correlations of the impulses is

1

(5 Onmaokl) = (1 "‘aml)Dar (Em — EJ.)Z

On O + 6m DT Z Onj ij'.

1
(Em - EI)Z j#m

(3.16)
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Equations (3.11) and (3.13)~(3.16) define our Brownian motion model for the
wavefunctions. It is important to note that the impulses driving the energy levels are
given by the diagonal elements §H,,, whereas the impulses driving the stochastic evolution
of the wavefunctions depend only on the off-diagonal elements §H,, . This decoupling
greatly simplifies the calculation of ensemble averages. We can consider the evolution of
the wavefunctions using (3.11) with the 7 dependence of the energy levels frozen, and then
perform the average over the energy level fluctuations specified by (3.8). It will be useful to
establish some notation for these averages. Averages over an infinitesimal time increment
d7 will be denoted by plain angle brackets, as used above. Averages over the ensemble
of Brownian paths will be indicated using a subscript e, for example (F).. Averages over
the off-diagonal fluctuations §H,_, with the energies frozen, will be written (F),; these
quantities depend on the history of the energy dependencies E,(7) because the energy
levels appear in the equations of motion for the wavefunctions. The remaining average

over the different histories of the energy levels will be written {- - -}4, so that

{(F}e = {{Flo)a - : (3.17)

Note that the ensemble average of the increment 8F in an infinitesimal timestep dt can be
written

({(8F))e = 8(F)e.. (3.18)

4. The overlap probabilities and amplitudes

In this section we calculate the overlap probability Py, = {|Umm(z)]*). and the mean
overlap (U,,, (7)), in the limit T — oo. The approach in both cases is to derive and solve
an equation of motion for the statistic of interest as a function of . Our calculations assume
that there are a large number of levels and that the density of states p can be regarded as
being independent of energy; these assumptions are valid for the Gaussian ensembles in the
large N — oo at fixed energy.

4.1. Overlap probabilities
The overlap probability is defined as

Pun(T) = (U (T« @.1)
Its increment & P, in time 37 is

8Py = {|Unm (T + 30D — {{Unm (@)
= {|Upnn(T) + 8Upna (2)[*)e — {{Upm (D)D)
= {3Urzm U:m + UnmaU:m + taUnmEZ}c . (42)

Note that we can write

U Usy)e = {((8Uam) Uy )e (4.3)
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and similar expressions for the other terms in (4.2). We therefore have
‘SPrm: = ((SUnm)U:m}e + (Unm(au:m))e + ((aUnmaU:m}}e (4-4)

(the (8U)? term is retained because it is of the same order in 87 as the U/ terms). Using
(3.13)~(3.15) to substitute for the averages over 1, we obtain

U, = Unn?
8Pun = (8(UpnlP)oda = Da-;(z _km—irﬂ

o (Em—E? [,
(|Urzk|2}o - (|Unm|2)o>
= D3 .- 4.5
’(,; En—EF s @)

We can extract from (4.5) a rate equation for the partially averaged overlap probabilities
Pr = {Unn "o (4.6)

obtained by averaging over the off-diagonal fluctuations §H,,. with the 7 dependence of
the energy levels frozen. These partially averaged probabilities obey the rate equation

dPp, _ D (Poj — P}

2 oy (4.7)

J#n (

This equation is to be solved subject to the initial condition Py (0) = &u. In the limit of
large 7, the probability spreads diffusively, and the P, may be regarded as a slowly varying
function of #: in this limit we can approximate the P, (z) by a continuous function 'of
n —m. Also, because of the rigidity properties of the distribution of energy levels given by
the Dyson model, we can assume that AE = E, — E,, is approximately egual to (n —m)/p,
where p is the mean density of states. We will therefore consider P to be a smooth function
of AE in the long-time limit. Replacing the sum in (4.7) by an integral, we appmx1mate
(4.7) by a continuum equation of the form

@0
PAE D f dE'R(AE — E'YP(E', 7) “3)
ot —eo
and the rate constant R(AE) is proportional to 1/AE? when p[AE| > 1. The integral
of R{AE) with respect to AE must be zerc in order for probability to be conserved; we
choose, for convenience, the following form for R which satisfies both of these conditions:
p°D

RAE) =1

—wpDS(AE). 4.9)

The final result, equation (4.12), does not depend on the manner in which the 1/AE?
divergence at small energy separations is eliminated. Equation (4.8) is solved by taking the
Fourier transform; if ¢ is the Fourler transform variable conjugate to AE, we have

ap ;’r D _omk@Ba,ry  Ray=1pDE e —1). (4.10)
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In the limit of increasing 7, the Fourier transform P(¢, 7} is supported on a decreasing
interval of ¢, centred at 7 = (: in this limit we can approximate e~¥/2 — 1 by —|t{/p. The
solution of the resulting equation is P = C exp(—mpDr]t|) for some constant C, chosen to
normalize the integral of P to 1/p. Inverting the Fourier transform, we find the following
approximate solution of (4.8), valid for large 7:

Dt

PAE,T) = o .
AE. D) = waDe)

4.1
This result is independent of the v dependence of the energy levels, indicating that there is
no need to average over the energy level fluctuations. Equation (4.11) has been verified by
a numerical simulation. Expressed in terms of the parameter X, and the state labels n, m,
our final resuit for the overlap probability is

I#,,2}(2
(En - m)2 -+ (erlu'zxz)z
which is valid in the limit |X] — co. An identical result is obtained in the orthogonal case.

A similar formula has been suggested by Kusnezov and Lewenkopf [10] for the case where
n = m, and numerical evidence supporting this result is given in {16).

an(x) =

4.12)

4.2. Overlap amplitudes

Next we consider the average of the overlap amplitude, {{U,,).. Averaging (3.13) over the
ensemble of Brownian paths, we obtain

(Unmbe = {{8Unm))e

1
- —losr(U ______) . @.13)
2 ﬂm#Zm(Em_Ek)ze
We can write this result in the form
1
=1 —_———————
(${Unm)o}a = ZDar(wm),,#ij s Ek)Z),,‘ (4.14)

A simple differential equation for the partial average (U}, can be extracted from (4.14);
its solution is

(Unm (7))o = 8pm eXpl— F,(7)] (4.15)

where we have used the initial condition U/,,,(0) = é,,. Here the function F,(r) is

T ‘ |
_1 ,
RO=10 [ o 2B EF @1

The ensemble average is obtained by iniegrating (4.15) over the different histories of the
energy levels E,(7):

(U (7)) e = nm{expl—Fy (T)Da

= f dF P[F1e~F (4.17)
o
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where P[F] is the probability distribution of the integrals F,,. The modal value of P[F] is
Frnoge ~ pZDT (4.18)

and the integral (4.17) is dominated by the modal region of the distribution of F, s0 that in
the limit of large ©

{Unm(T))e = 8um g exp(—0tpp® D) (4.19)

for some constants g, I'g. We have not been able to calculate these constants analytically.
We confirmed (4.19) by simulating the Langevin equation (3.8) for the evolution of the
energy levels, and calculating the average (exp[—F (z)]}g. Our numerical simulations give
the values oy &~ 3.84 and I'y & 0.8 in the orthogonal case (8 = 1), and op = 2.6, ['» =~ 0.9
for the unitary case. We remark that in the orthogonal case the mean value of F does not
exist, due to the greater probability of near degeneracies where E, = Ej, but this fact does
not affect the existence of {exp(—F)).

There is a significant difference in the interpretation of the results between the orthogonal
and unitary cases. In the unitary case, the predictions of the Dyson model and the smooth
parametrization (2.1} may not coincide, because the phases of the eigenfunctions j¢,(X))
depend on the path taken by the random walk in the multidimensional parameter space.
The phases of the off-diagonal elements are determined by the connection rule (3.4), which
is path-dependent: the difference in phase of the state |¢, (X))} between two paths is given
by the integral of the curvature of the connection over a surface of which the two paths
form the boundary [15]. The phases from different Brownian paths leading to the same
point in the multidimensional parameter space may lead to a cancellation of the average
of the off-diagonal matrix elements, and it is probabie that in the unitary case the average
{Uam (1)} decays more rapidly than for the smooth parametrization. In the orthogonal case,
the connection rule (3.4) simply ensures that the wavefunction remains real, and the phase
is the same for all paths. Only in the orthogonal case can (4.19) be applied directly to the
the case of a smoothly parametrized Hamiltonian, 1mp1ymg a Gaussmn decay of correlations
in the limit | X| — oo

(Oum (X))e = 8umT1 exp(—01 20" X . (4.20)

5. Correlations of matrix elements

Now we will use the results of section 4 to derive information about correlations of matrix
elements in the limit of large X. We consider the matrix elements A,,,(X) of an arbitrary
operator A in the basis formed by the states |¢,(X)}}. The dependence of the matrix
elements A, (X} = (¢, (X} A(X)|¢»(X)} on the parameter X is most strongly influenced
by the parameter dependence of the basis states; we will therefore assume that the operator
A is independent of X. As in section 4, the results apply to the N — oo limit of the random
matrix problem.

Following the usual approach of random matrix theory, we assume that the matrix
elements A, (0) are uncorrelated Gaussian random variables, with mean value zero, and
with a variance o2, which can depend on E= .%(E,, 4+ En)and AE=(E;,— Ep). In
semiclassical systems, the variance o2(E, AE) varies on a scale which is O@) in AE,

e ok e«
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but independent of % in the variable E [13]. For this reason, we will also simplify the
calculation by assuming that ¢ is a function of AE only.

In the case of systems without time-reversal invariance, for which the umtary ensemble
is an appropriate model, we will assume that the matrix elements An. have the following
statistical properties:

(Anm (D)) =0 : (5.1)

and
{Anm (0) A% (00} = SpneBmm 2, {Anm 0 Antmy (0} = S BremG 2, . (5.2)

In ‘real’ systems the off-diagonal matrix elements have mean value zero [4], but the mean
value of the diagonal matrix elements need not be zero [11]; owr results can readily be
extended to that case. In systems with orthogonal statistics the matrix elements are real,
and we replace (5.2) by

(Anu’ (O)Amm’ (0)) = (ann’amm' + an'msnm’)ofm . (53)

The matrix elements A,,(X) can be obtained from those at X = 0 using the coefficients of
the unitary matrix L/, (X):
Anm(X) = (Gl XD Al (X))
=D 3 (B (D) DO e O Al (0){10) | (X))
k !

=22 3 U A OUn(X). 54

It can be assumed that the matrix elements Ay, (0) and 17, (X) in (5.4) are uncorrelated,
because A is assumed to be independent of the Hamiltonian H; averages over the elements

Upm (X} and A(0) can therefore be separated. We now consider both of the averages
introduced in (1.1) in turn.

5.1. Diagonal matrix elements

First we consider the calculation of the correlation coefficient of the diagonal mamx.
elements:

(Arn () Awn(0)) = Y D (U (X)Un (X)) e At (0) A () . (5.5)
k !

The only non-vanishing contribution is from the term k = [ = »', which (using

equation (4.12)) gives
o’ X2
(En — Ex ) + (mou?XH)?

(A X)Apr (@)} = Py no'nzn {5.6)

This result shows that, although the matrix elements are initially uncorrelated at X = 0, the
elements become correlated when evaluated at different values of the parameters. These
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correlations decay as X2 at large X. A similar result is obtained in the orthogonal case;
the only difference is that the result is multiplied by a factor of two.

In many situations individual matrix elements are of little significance, but sums of
matrix elements are related to observable properties. In the case of diagonal matrix elements
it is natural to consider the statistic f (E) defined by (1.2). The correlation function of this
statistic, obtained by averaging over the energy E, can be obtained from (3.6):

' 1
K2(AE, X) = (f(AE, X)£e0, 005 = 5= > 3~ (An(X) Auw (O))

x exp[—(AE — E,)?/2¢%} exp[—E2 /2¢7]. 5.7

We now replace the summations by integrations, and approximate P, using a continuous
function obtained from (4.12). We find, in the limit where pe 3» 1

2.2
Ki{AE, X)=‘;ﬁ f dx f dyP(x, X)exp[ (x + )2 /26 expl—(AE + y)?/2¢%)

= :—Z‘fj—i'; f_ PO D) expl—(AE - %)% /4e7]. 5.8)
The convolution theorem gives
por'°‘ oo i
K AE,X) = ?f dt exp(—e*t® — mpulX?|t} — IAED (5.9
—20

which can be written in terms of the complimentary error function erfc(x):

p nn

KAAE, X)= [exp(zz)erfc(z) +exp(z*2)erfc(z )]

z=(mpu*X? + 1AE)/2e . . (5.10)
This result is valid when pe > 1.

5.2. Off-diagonal matrix elements

Now we consider the correlation of a pair of off-diagonal matrix elements. The unitary
and orthogonal cases are different and we discuss themn separately, starting with the unitary
case:

(A A O =D 3 {Up (DUt (X)) e{ Ar (0} Al (O3}
!

k
= (U2, Unm}eO 2 - (5.11)

We can adapt the calculation of section 4.2 to estimate the coefficient (U}, Upy}.. Consider
the average of the small increment in U, U, Occurring during the time interval dz:

(S(U mm)) = (5 )Um'm + U:"n {aUm’m} + (au;naum’m}

1 1
= —1D8r|: —_+ ———]U* Uit
2 ; (En — Ex)* ,#Zm (Em — Ex)?

aﬂmoarz(ﬁ, — gy VU ' (5.12)
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where equations (3.13) and (3.15) have been used o evaluaie the averages. When n # m,
the average of U}, Uy, with the energies frozen therefore obeys the rate equation

S(U:'n Unimbo = —R (%) (U:fnUm'm)asr (5.13)
where
=2 [g(&c E)2+;(E -Ek)z] 6.14)

We now follow the argument at the end of section 4.2: solving (5.13), averaging over the
energy fluctuations, and substituting the result into (5.11), we predict that the correlations
of cff-diagonal elements decay exponentially as T — oo:

{Anm(T) Al (0)) = B8 5 T exp(—thp? D) . (5.15)

Here I'; and o are constants which arc analogous to those introduced in (4.19), and which
depend upon n —m. In the limit [# — m| 3> 1 the two sums in (5.14) are independent, and
we will have o — 20, T, — I'Z.

In the othogonal case we have

{Arm (X)) Apmr (00} = {Own O + Owm Omin}eFnm (5.16)
and using (3.13) and (3.16) we find that
8{O0pn Oprin + Owm Omrnto = —R{TH Owp Omin + Onm Opyrn)odT (5.17)
where the rate constant is given by a slightly different expression from (5.14):
Rm)=1D + 5.18
®=3 L,;m (Er — Ep)? k;,, (Em — Ek)2j| ©-18)

Again, the argument at the end of section 4 indicates that the correlation function is an
exponential decaying function for large 7, with a different decay constant ¢. In terms of
the dependence on X, the decay of correlations is Gaussian in the limit T — oo

(Anm(X)An'm’(O)) = (Sun B + 3n'mam’n) Fl EXP(—OL’]# p2X2} - (5-19)

6. Semiclassical theory for diagonal matrix elements

In this section we compare the random matrix theory prediction for the correlation function
of the diagonal matrix elements with a semiclassical calculation, which applies to a system
with chaotic classical motion. In the case of integrable classical mation, there is not expected
to be any correspondence with random matrix theory.

It is not possible to write down an expression for a given matrix element of a chaotic
system using semiclassical methods. The best that can be achieved is to write down an
expression involving a summatior over matrix elements in a small range of energy. For
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diagonal matrix elements, the appropriate sum is given by (1.2), and we will use a Gaussian
weight for the smoothed delta function:

3 (x) = exp(—x2/2¢%) fe27r . (6.1)

In the case where A is the identity operator, the sum (6.1) reduces to the smoothed density
of states n(E), for which Gutzwiller [3] has given an expression in terms of the periodic
classical orbits of the system (which are unstable and isolated):

ne(E) = p(E}+ ) _ a; exp(iS;/h) exp(—e*}/2h%) (6.2)
J

where p(E) is the Weyl approximation to the density of states, and the index j labels the
periodic orbits of the underlying classical system. Here S;(E} is the classical action of the
Jjth periodic orbit at energy E, and o, contains information about the stability of the orbit
and the Maslov indices. By calculating tr{AS(E — H }} using Gutzwiller’s method, this
result is easily extended to the quantity f.(E); the result [11] is

FAE) = (A + Y oy Ay exp(is; /) exp(—ec2/207) 63)
J

where {A) is the microcanonical average of the classical limit A(g, p) of A at energy E,
and A; is the time average of A(g, p) of over the periodic orbit (g;(r}, p; (1))

- |
A= JAEZCTORAON _ (6.4)

Because we are concerned with the fluctuation properties of f,(E), we will assume that the
term {A) vanishes. Now we consider the correlation function of f.(E)

Ka(AE, X) = (f(E+ AE, X)f(E,D)g (65)

where the average is taken over an interval of energy for which §;, «; and ﬁj are
approximately constant. Using the pericdic orbit expansion (6.4), we have

Ky(AE, X) =) Y (eyonA; A expli(Sj(E + AE, X) — Si(E. 0))/A]
i ok ,
x expl—e*(zf + T2/ 2], - (6.6)

1In the semiclassical (8 — 0) limit the term involving expli($; — Sg)/h] is highly sensitive
to variations in the energy of the orbit and the parameter X, because % appears in the
denominator of the phase. The dependence of the factors «; and A; on energy and X will
therefore be neglected. Also, the A can be regarded as random vanables in the case of a
system without time-reversal symmetty the double sum is dominated by the diagonal term,
j = k; when there is time reversal invariance the orbits exist as symmetry related pairs. In
the former case the correlation function can therefore be written

KAAE, X) = Z(fsz2 (eXp[ ( a‘;X + 3“2 AE)]) exp(—€2T2/R?). ®7)
E
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A result discussed in the appendix relates the parameter derivative of the actions of the
periodic orbits to the parameter derivative of the Hamiltonian, integrated over the trajectory:
it is shown that, for long periodic orbits

(exp[ (gf{)}(]) = exp[-nr,ouzerj/h] 6.3)

where the average is with respect to long orbits with periods close to 7;. For long-period
otbits the amplitudes ¢; satisfy a sum rule discussed by Hannay and Ozorio de Almeida
[17]:

Jim E letj 128, (x — 5] = (6.9)

(2::&)2

The mean value of A(qg,p) evaluated along the periodic orbits can, in the case of long
orbits, be related to the correlation function of A. Using a relationship between correlation
functions and matrix elements which is discussed in [13], this can be expressed in terms of
the mean square matrix elements of A:

- 1 % (v, W1 e
(A7) = ?j; dtfo dt" A;()A; () ~ = dr{A(AD) = 2mpha™(E,O)/7;  (6.10)

§ o —oe
where o(E, 0) is the variance of the ofi-diagonal matrix elements with E, ~ E,, ~ E.

Using equation (6.9} to replace the summation in (6.7) by an integral, and using (6.8) and
(6.10), we have

2 o0
K4(AE, X) = -‘-’f— f dr exp(—e2t*/A2) exp(—(wpp® X?z| +iAET)/R)

(6.11)

=7 \/_ [exp(zz)erfc(z) + exp(z*Serfe(z")]

7= (mpu’X2+iAE) 2.

This is identical to the random matrix result for the unitary case, equation (5.10). For
a gystem with time-reversal invariance, pairing the orbits with their time-reversed images
doubles this result, in agreement with our findings for the orthogonal ensemble.

7. Concluding remarks

We have found a surprising difference between the correlation functions of diagonal matrix
elements (which have correlations decaying with a power law), and off-diagonal elements
(for which, in the orthogonal ensemble, the correlation function has a Gaussian decay).
Also, we found that diagonal matrix elements which are uncomelated at X = X’ become
correlated when X £ X' this follows from the fact that a pair of states |¢, (X"} and |, (X))
which are orthogonal when X = X’ overlap when X 5= X'. These emergent correlations are
absent from the off-diagonal matrix elements. Our conclusions concerning the off-diagonal
matrix elements are consistent with a model for matrix element correlations introduced in
an earlier paper [1], which discussed a model for the dynamics of complex systems.
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There is an extensive literature on the correlation function of dE,/dX, which was
investigated using random matrix methods by Altshuler and Simons [18] and by Beenakker
and Rejaei [8, 9], and using semiclassical methods by Berry and Keating [19]. 'AI'he parameter
derivative of an energy level is a diagonal matrix element (dE,/dX = {¢,[dH /dX|¢,)) but
our results are distinct from those of these earlier papers. This is because the matrix element
dE,/dX is correlated with the parameter dependence of the energy levels, whereas we have
considered the case where the operator A is unrelated to the Hamiltonian.

We made efforts to find a correspondence between our random matrix resulis on the
statistics of the off-diagonal matrix elements, and a semiclassical theory [13] for the variance
of the off-diagonal matrix elements. In this case we could not establish a correspondence;
we believe that this is because the existing semiclassical theory is not sufficiently refined
to reproduce the random matrix results.

We believe that the exiension of the Dyson’s approach to parameiric dependencies of
wavefunctions described in this paper will find many applications beyond those described
in this paper. It is possible to use these methods to calculate averages of products of four
overlap matrix elements Uy, and we are applying this approach to comelation functions of
transition strengths |Ap,;|* and of the adiabatic curvature or Berry phase 2-form [15].

Acknowledgments

MW thanks CWJ Beenakker for the suggestion that the Dyson model could be extended to
the eigenstates. This work was supported by the EPSRC, through a research grant reference
GR/H94337, and a postgraduate studentship for PNW.

Appendix.

Goldberg et al [20] show that the parameter derivative of the action of a periodic orbit is
related to the parameter derivative of the classical Hamiltonian as follows:

a5; v 3H
= [ az@o.ne. (a1

In the limit of long periodic orbits these integrals can be assumed to have a Gaussian
distribution. We will assume that the microcanonical average of 34 /80X vanishes; the
calculation is easily extended to the general case. For orbits which are long compared to
the characteristic timescale for the decay of classical correlations, the variance of 35;/3X
can be expressed in terms of the classical correlation function

9H 8H
Ca(E,T) =[dedp =% (2. ) ——(q(®), p(¢)) 8(E — H{g.p)). (A.2)
ax ax
Following the argument of Goldberg et al,
35; \* %
((-ﬁ) >= 7 ./;m d; CalE, 1), (A.3)

In the semiclassical limit the integral over the correlation function can be expressed [13}
exactly in terms of the variance of the matrix elements for states with nearly equal energies:

((ﬁﬂ = 2whto(E,0). (A4)
X / ’
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If ¢ is a Gaussian distributed with mean value zero, we have {exp(i#)} = exp(——%(ez)).
Applying this to (A.4) gives

(exp[% (%f—:_—) X ]) = exp[—no’X 2'@,— /R]. (A.5)

References

[I] Wilkinson M and Austin E J 1995 J. Phys. A: Math. Gen. 28 2277-96
[2] Porter C E (ed) 1965 Statistical Theories of Spectra: Fluctuarions (New York: Academic)
[31 Gutzwiller M C 1990 Chaos in Classical and Quantum Mechanics (New York: Springer)
[4] Austin E T and Wilkinson M 1992 Nonlinearlity 5 1137-50
{5] Wilkinson M 1988 J. Phys. A: Math. Gen. A 21 402137
[6] Taniguchi N and Altshuler B L 1994 Phys. Rev. Lett. 71 4031
[71 Dyson F ¥ 1962 J. Math. Phys. 3 1191-8
{81 Beenakker C'W J 1993 Phys. Rev. Lett. 70 4126
[9] Beenakker C W J and Rejaci B 1994 Physica 203A 61-50
[101 Kusnezov D and Lewenkopf C H 1995 Yale university preprint
[11] Wilkinson M 1988 J. Phys. A: Marh. Gen. A 21 1173-90
[12] Mehta M L 1991 Random Matrices 2nd edn (New York: Academic)
[1%] Wilkinson M 1987 L Phys. A: Math. Gen. A 20 2415-23
[14] Pechukas P 1983 Phys. Rev. Lert. 51 943-6
[}5] Shapere A and Wilczek F (eds) 1989 Geometric Phases in Physics (Singapore: World Scientific)
[16] Kuspezov D and Mitchell D 1995 Yale university preprint
[17] Hannay I H and Qzorio de Almeida A M 1984 J. Phys. A: Mash. Gen. A 17 342940
[18] Simons B D and Alshuler B L 1993 Phys. Rev. Lest. 70 4063
[19] Berry M V and Keating J P 1994 J. Phys. A: Math. Gen, A 27 6167~76
[20] Goldberg J, Smilansky U, Berry M V, Schweizer W, Wunner G and Zeller G 1991 Nonlinearity 4 1



