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Abstract. We introduce a Brownian motion model for the parametric evolution of eigensrates of 
a complex quantum system modelled by a random matrix. The model is analogous to Dyson’s 
model for the evolution of the eigenvalues. W e  use this approach to analyse correlation functions 
describing the parameter dependence of diagonal and off-diagonal matrix elements of a generic 
operator. In the case of diagonal matrix elements, we compare our results with a semiclassical 
approach, which relates sums of matrix elements to periodic classical orbits. For systems with 
a chaotic classical limit, the semiclassical correlation function agrees exactly with the random 
matrix theow. 

1. Introduction 

In this paper we consider the sensitivity of the eigenstates of a Hamiltonian A(X) 
to variations of a parameter X, using a random matrix model. We characterize the 
parameter dependence of the eigenstates I&(X) )  through statistics of the matrix elements 
U,,(X’, X) = (&(X’) I&(X)} ,  describing the overlap between eigenstates at X‘ and those 
at X. We calculate the mean value (Unm(X‘, X)) of these overlap matrix elements and the 
overlap probabilities Pnm = (]Unm(+?, X ) I 2 } ;  the angle brackets denote an average over the 
random matrix ensemble. We use these statistics to analyse theAparameter dependence of the 
matrix elements A , , ( X )  = (@, , (X)lAl@m(X)}  of an operator A which is independent of the 
Hamiltonian. There are several physical problems for which it is important to understand 
the parameter dependence of matrix elements of this type. One application is to the analysis 
of the adiabatic form of the Schrodinger equation, in which these matrix elements appear 
[l]. Another application is to understanding fluctuations of transition strengths of atomic, 
molecular, or mesoscopic systems as a parameter (such as an externally applied electric or 
magnetic field) is. varied. 

In common with other theories based on random matrix Hamiltonians, the results are 
expected to apply to ‘real’ quantum systems which have no symmetries or constants of 
motion: random matrix models have been very successful in describing complex nuclear 
spectra [2], and systems with few degrees of freedom which have chaotic classical dynamics 
[3]. As well as providing a good description of the statistical properties of the spectrum, 
random matrix models can also describe the parametric dependence of energy levels [4]. 
This is important in analysing the response of systems to large perturbations [5] ,  and to 
perturbations which induce a shift in the paramerer as well as a transition between levels 
161. We demonstrate the applicability of our random matrix results by comparing one of 
our statistics with semiclassical results, for a system with a chaotic classical limit. Despite 
the very different basis of the two approaches, the results agree exactly. 

03054470/95/216143+1851950 @ 1995 IOP Publishing Ltd 6143 



6144 M Wilkinson and P N Walker 

The parameter dependence of the matrix elements A,, can be characterized by their 
correlation functions: we will consider correlations of both diagonal and off-diagonal matrix 
elements: 

(1.la) 
(l.lb) 

The angle brackets denote an average over the random matrix ensemble; to apply the 
results to specific quantum systems this average would he replaced by an average over 
matrix elements for states with energies E,, E, close to a given energy E ;  we give an 
example of such an average in (1.2) below. 

It is difficult to calculate these correlation functions directly, using a model in which the 
Hamiltonian depends smoothly on the parameter X. Instead, we will consider a Brownian 
motion model, in which the Hamiltonian matrix evolves diffusively, as a function of a 
fictitious time variable T. The Brownian motion model was invented by Dyson [71, and 
used to study parameter dependencies in the spectra of random mauices by Beenakker and 
Rejaei [8, 91. In section 2 we discuss the relationship between the Brownian motion model 
and a smooth parametrization of the random matrix Hamiltonian. 

The equations of motion of the energy levels in the Brownian motion model were 
discussed by Dyson [7]. In section 3 we give Langevin equations of motion for the 
overlap matrix elements U,,, which are analogous to the Dyson model for the eigenvalues. 
We discuss the solution of these equations of motion in section 4, and give results 
for the averages of the elements U,, and the overlap probabilities I(lnmIZ in the limit 
where T is large. Our results are complementary to some recent work by Kusnezov and 
Lewenkopf [IO]. They describe a considerably less general Brownian motion model for the 
wavefunctions which only treats the diagonal elements U,,,, but they also consider a variant 
of the model in which the matrix elements undergo anomalous diffusion. 

In section 5 we apply these results to the correlation functions (1.1). It is desirable to 
check these predictions of random matrix theory against other approaches. In section 6 we 
compare our results for the diagonal matrix elements with a semiclassical theory [ 111 for 
the statistic 

where & ( x )  is a 'smoothed delta function', i.e. a function supported on an interval of 
length E at x = 0, with unit weight (an example is & ( x )  = exp(-xZ/2Ez)/t&). This 
statistic represents an average value of the diagonal matrix elements of for states 14") 
with energies within a tolerance E of E .  We find that the semiclassical and random matrix 
theory predictions for the correlation function of f agree exactly. Section I contains some 
concluding remarks. 

2. Relationship between the parametrized Gaussian ensembles and the Dyson model 

The natural model for analysing parameter-dependent quantities is the following 
parametrization of the standard Gaussian ensembles [4]: 

r i ( x )  = cos XI?, + sinXIjz (2.1) 
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where f i l  and fiz are independent samples from the same Gaussian symmetry-invariant 
ensemble: the relevant symmetry clyses are-orthogonal, unitary, or symplectic 12, 121. 
The dimension N of the matrices HI and Hz should be large. We will only discuss 
the cases of the Gaussian unitary and orthogonal ensembles. In the case of  the unitary 
ensemble the Hamiltonian is a Hermitean matrix with elements of the real and imaginary 
parts independently Gaussian distributed, satisfying 

(Hij)  = 0 (22 

and 

{H..H? ,I c ’ j ’  ) =&.,S.-, L r  J J  JJ =&.&. ‘J L J ’  (2.3) 

{H- .Hj .y )  ,I = 6;j?6jj’ +SijMYj.j .  (2.4) 

The elements of the orthogonal ensemble are real and (2.3) is replaced by 

In this paper we will show that matrix elements decorrelate over a very short range of X; in 
this case the periodicity of (2.1) in X is irrelevant, and the Hamiltonian can be approximated 
by 

A(X) = fi, + X f i z  . (2.5) 

Random matrix models provide a good statistical description of the spectrum of many 
systems, after the energy levels are scaled to have the same density of states p as the random 
matrix ensemble. When we extend the random matrix model to describe the parameter 
dependence of energy levels, another scaling parameter must be introduced to describe the 
sensitivity of energy levels to a perturbation. The most naturd choice [4] is the variance of 
the off-diagonal matrix elements of a H / a X :  

The matrix elements are evaluated in the eigenbasis of A,  and only matrix elements for 
which E, and E,,, are close to the energy of interest are included in the average. It follows 
from the invariance properties of the Gaussian ensembles that for ow random matrix models 
(2.1) or (2.5) we have fi = 1. The general definition of f iz,  and formulae for calculating it 
in semiclassical systems, are discussed in [4, 131. 

The X dependencies of the matrix elements A, obey a complex set of equations of 
motion similar to those discussed by Pechukas [14]; the direct solution of these equations 
is very difficult. Instead, we will relate the parameter dependence of the model (2.1) to that 
of the ‘Brownian motion model’ discussed by Dyson [7]. which is considerably simpler to 
analyse. This correspondence was first discussed by Beenakker [SI, who noted that if the 
Brownian motion model and the smooth parameeization are to agree, the parameter X and 
the time variable r must be related by Xz * t for small r .  Our discussion below makes 
the connection with (2.1) clearer, in that it shows that the relationship between Xz and r is 
linear for all r .  

In the Dyson model, the matrix elements of the Hamiltonian undergo a diffusive 
evolution as a function of a fictitious time variable 5. In the unitary case the change 
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SHjj in the elements of the random matrix Hamiltonian due to an infinitesimal increment 
Sr in the time variable satisfies 

(SHjjjsH;y) = 6 ; j d j y D 6 ~  (SH;,SH;r7) = G;7Si3,DSr (2.7) 

where D is a constant. The corresponding rule for the orthogonal case follows by analogy 
with (2.3). The increment Si? is also assumed to be independent of the Hamiltonian A. 
The invariance properties of the Gaussian invariant ensembles show that (2.7) remains true 
when the matrix SA = {SHj j }  is transformed to the eigenbasis of fi; we use the notation 
SH;, = (&lSI?l&) for these transformed matrix elements. In the version originally 
formulated by Dyson, the mean value of SHjj is non-zero in order to ensure that the 
matrix elements do not have a secular increase. The matrix element correlations which we 
consider decay very rapidly, and we can ignore this refinement and write 

( S H i j )  = 0.  (2.8) 

The reader can verify that neglecting the mean value makes no difference to the correlation 
functions which we calculate. 

We will show explicitly that the dynamics of the deterministic model (2.1) and of the 
stochastic model described by (2.7) and (2.8) are related if the increment of the fictitious 
time variable is related to the parameter X by the relation 

p2Xz = Dr . (2.9) 

In order to clarify the connection between these two random matrix models, we introduce 
a multidimensional version of (2.l), in which the parameter space is d dimensional, with 
components X I ,  X2,. . . , X d ;  we will be concerned with the limit in which d >> 1. We 
consider the following generalization of (2.1): 

(2.10) 

Note that both B ( X )  and ai?/aX; have the same statistical properties as (2.1). We will 
contrast the behaviour of the elements of this Hamiltonian matrix along two different paths 
in the multidimensional parameter space. One of these paths will be a random walk; along 
this path the elements of the Hamiltonian matrix evolve diffusively, in exactly the same 
manner as for the Brownian motion model. The second path is a straight line joining 
the beginning and end points of this random walk. Along this path, the evolution of the 
Hamiltonian matrix is smooth and deterministic, and is similar to (2.1). 

First we consider the case of the random-walk path, in which for each time interval 
Sr we make a step of length &SXi along a randomly chosen axis (the ith, say). The 
corresponding change in the Hamiltonian matrix is 

sii = [-sin(v'2X;)&-l +cos ( J ; i~ ; ) f i~ ; ]~~ ; .  (2.11) 

If we take the magnitude of 6X; to be )SX;l = m / p ,  it is clear that the statistical 
properties of the increment (2.10) are identical to those of the Dyson model, specified by 
(2.7) and (2.8). Furthermore, because the increments of the Hamiltonian in each of the 
d different directions are independent random matrices, the successive time steps become 



Brownian motion model 6147 

uncorrelated in the limit where d > 1. In the limit where d is large, the evolution of the 
Hamiltonian therefore corresponds to that of the Dyson model. 

The random walk reaches a position X ( r )  after time r. The Euclidean distance 
travelled, R = 1x1, satisfies (Rz) = Dr/p2 ,  and the probability distribution P[R]dR 
of R is 

P[R]dR = CRd-'exp(-d/12R2/2Dr)dR (2.12) 

for some constant C. In the limit of large d, this distribution is very sharply peaked at 
R = a/&, implying that although the direction travelled is random the final distance 
from the starting point has very small fluctuations. 

We now consider an alternative path, in which the end point of the random walk is 
reached by following a straight line, paramehized by a coordinate h: we write 

X ( A )  =As (2.13) 

where X ( r )  is the final position of the random walk at time 5 ,  and s = X ( c ) / f i  is a 
vector which, in the limit d >> 1, has a length which is almost always very close to unity. 
The Hamiltonian at coordinate A along this path is 

where in the second relation we assume that A d  << 1, and where 

(2.14) 

(2.15) 

are two independent GUE or GOE matrices with statistics specified by (2.2H2.4). Along the 
straight line path parametrized by A, the model (2.10) is therefore equivalent to the smooth 
parametrization, equation (2.5), provided that A d  << 1. This model can be used to analyse 
the decay of correlations if the support AA of the correlation function satisfies A A d  << 1. 
Our resuIts will show that Ahpp. - 1: for the random matrix ensemble, p - fi  and 
p = 1 [2], implying that we should choose N and d in (2.10) such that N > d >> 1. 

By considering the evolution of (2.10) along two different paths, we have shown 
that the Brownian motion model is equivalent to the smoothly parametrized ensemble 
when h = &. The correlation of a function in the smoothly parametrized model can 
therefore be obtained from that in the Dyson model using (2.9), provided that the function 
is independent of the path. 

3. A Dyson model for the evolution of eigenstates 

The eigenfunctions 14") of a chaotic system are very sensitive to variation of a parameter 
in the Hamiltonian. The parameter dependence can be characterized by the set of Dirac 
brackets 

Unm(X',  X) = (bn(x')l$"(x)). (3.1) 
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The matrix 0 = (U,,) describes a change of basis, and is therefore unitary. We will 
consider a model for which the correlation functions depend only upon the separation X-X', 
and consider only the case where X' = 0. This is reasonable, because the correlations of 
functions decay very quickly. 

We will derive a Brownian motion model for the overlaps (q5n(0)[@m(r)); results for a 
smooth Hamiltonian can be obtained using (2.9). The objective is to model the evolution 
of the matrix elements Unm as a function of r by a set of Langevin equations. The starting 
point for deriving these equations is to apply Rayleigh-Schrodinger perturbation theory to 
second order. In the case of the energy levels this gives 

M Wilkinson and P N Walker 

SE,(r) = E , ( t + S r ) - E , ( r ) = S H ~ ~ + C  1SH'm12 + O(SHn) (3.2) 
m#n En - Em 

where SH," = in the case of functions 

(3.3) 

The wavefunction remains normalized (up to second order in SH'), and satisfies 

(h(r)I6@n(7)) = 0 (3.4) 

to lowest order. In the unitary case (3.4) can be seen as a connection rule [I51 which 
determines the phases of the states, given an arbitrary choice at 7 = 0; for the orthogonal 
case the wavefunction is always real. Defining 

AUnm(r) = (&(r)I&(T + W )  (3.5) 

we find that the overlap U n m ( t )  = (&(O)l&(s)) evolves as follows: 

(3.6) 

The coefficients AUkm can be obtained from (3.3). The change in the overlap matrix element 
U., due to a perturbation of the Hamiltonian with elements SHL, is therefore 

6Ur"r)  = U,"S f 6 7 )  - U n m ( 5 )  = Unk(r)[AUkm(r) - Jkm] 
x 

(3.7) 
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If the matrix elements SH," evolve diffusively according to (2.7) and ( U ) ,  equations (3.2) 
and (3.7) can be replaced by Langevin equations. The Langevin equation corresponding to 
(3.2) was discussed by Dyson 171: the change in the energy level E,, in time Sr is the sum 
of a random impulse SF. and a drift with velocity v., 

SE, = 6F, + v&. (3.8) 

The drift velocity is given by 

(3.9) 

and the random impulse hFn = Hin satisfies 

(SF,) = 0 (SF:) = (SH':,J = 2p-'DSr (3.10) 

(where ,6 = 1 in the orthogonal case, ,6 = 2 in the unitary case). The overlap matrix 
elements satisfy a similar Langevin equation 

&Unm = SF,, + v,,,Sr: 

(3.11) 

where the second line defines both the random impulse term and the drift velocities. The 
Langevin equation is fully specified by calculating the drift term (Sun,) and $e comlations 
of the impulse terms, which are the same (to leading order in Sr) as the correlations of the 
Suam: 

(sF,,sF~,,,) = (SU,,SU,,~,.) + o(8r2). (3.12) 

We now consider the statistical properties of the elements SU,,, treating the unitary and 
orthogonal cases separately. Using equations (2.7) and (2.8). and discarding all terms of 
higher order than 6 H R ,  we find that the leading order contributions to ihe changes in the 
matrix elements Unm therefore have the following statistical properties: 

(3.13) 

(3.14) 

(3.15) 

(and the r.h.s. of (3.14) is zero when m = 1). In the orthogonal case we write 
Onm(r)  = (@n(0)l@m(r)}; the equation for (SO,,) is identical to the unitary case (3.13), 
but the result for the correlations of the impulses is 

(3.16) 
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Equations (3.11) and (3.13)-(3.16) define our Brownian motion model for the 
wavefunctions. It is important to note that the impulses driving the energy levels are 
given by the diagonal elements 6Hi,, whereas the impulses driving the stochastic evolution 
of the wavefunctions depend only on the off-diagonal elements SH,&. This decoupling 
greatly simplifies the calculation of ensemble averages. We can consider the evolution of 
the wavefunctions using (3.11) with the r dependence of the energy levels frozen, and then 
perform the average over the energy level fluctuations specified by (3.8). It will be useful to 
establish some notation for these averages. Averages over an infinitesimal time increment 
6s will be denoted by plain angle brackets, as used above. Averages over the ensemble 
of Brownian paths will be indicated using a subscript e, for example (F)< .  Averages over 
the off-diagonal fluctuations AH;,, with the energies frozen, will be written ( F ) o ;  these 
quantities depend on the history of the energy dependencies E.(r) because the energy 
levels appear in the equations of motion for the wavefunctions. The remaining average 
over the different histories of the energy levels will be written (. . .),,, so that 

( F ) e  ( ( F ) o ) d .  (3.17) 

Note that the ensemble average of the increment 6F in an infinitesimal timestep Sr can be 
written 

( ( 6 F ) ) e  = S ( F ) e .  (3.18) 

4. The overlap probabilities and amplitudes 

In this section we calculate the overlap probability P,,, = (lUnm(r)lz)e and the mean 
overlap (Unm(r))e in the l i t  r -+ bo. The approach in both cases is to derive and solve 
an equation of motion for the statistic of interest as a function of r .  Our calculations assume 
that there are a large number of levels and that the density of states p can be regarded as 
being independent of energy; these assumptions are valid for the Gaussian ensembles in the 
large N -+ bo at fixed energy. 

4.1. Overlap probabilities 

The overlap probability is defined as 

pnm(r) = (lunm(r)lz)e. 
Its increment 6Pnm in time 6r is 

(4.1) 

Note that we can write 
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and similar expressions for the other terms in (4.2). We therefore have 

Spm ( ( 8 U n m ) u i m ) c  + ( u n m ( S U ; m ) ) e  + ((SUt"Ui,))e (4.4) 

(the (CW)~ term is retained because it is of the same order in Sr as the SU terms). Using 
(3.13H3.15) to substitute for the averages over Sr, we obtain 

We can exuact from (4.5) a rate equation for the partially averaged overlap probabilities 

pim = (lUnmlzL (4.6) 

obtained by averaging over the off-diagonal fluctuations SHL, with the r dependence of 
the energy levels frozen. These partially averaged probabilities obey the rate equation 

(4.7) 

This equation is to be solved subject to the initial condition P,,,(O) = In the limit of 
large z, the probability spreads diffusively, and the PLm may be regarded as a slowly varying 
function of n:  in this limit we can approximate the PL,(z) by a continuous function 'of 
n - m. Also, because of the rigidity properties of the distribution of energy levels given by 
the Dyson model, we can assume that AE = E, - E, is approximately equal to (n -m)/p, 
where p is the mean density of states. We will therefore consider P to be a smooth function 
of AE in the long-time limit. Replacing the sum in (4.7) by an integral, we approximate 
(4.7) by a continuum equation of the form 

(4.8) 

and the rate constant R(AE) is proportional to l /AEZ when p[AEl >> 1. The integral 
of R(AE) with respect to AE must be zero in order for probability to be conserved; we 
choose, for convenience, the following form for R which satisfies both of these conditions: 

R(AE) = p3D -npDS(AE) 
1 + ~ Z A E Z  (4.9) 

The final result, equation (4.12), does not depend on the manner in which the l /AEZ 
divergence at small energy separations is eliminated. Equation (4.8) is solved by taking the 
Fourier transform; if t is the Fourier transform variable conjugate to AE, we have 

- 
(4.10) -- 'I - 2nk(t)&?, t )  E ( ? )  = 4pzD(e-ltl/P - I ) .  

as 
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In the limit of increasing r ,  the Fourier transform p ( t ,  t )  is supported on a decreasing 
interval off ,  centred at t = 0 in this limit we can approximate e-lrl/Q - 1 by - \ t \ / ~ .  The 
solution of the resulting equation is p = Cexp(-npDrltI) for some constant C, chosen to 
normalize the integral of P to llp. Inverting the Fourier transform, we find the following 
approximate solution of (4.8), valid for large r :  

M Milkinson and P N Walker 

D s  
A E ~  + (kpDr)2 . 

P ( A E ,  r )  = (4.1 1) 

This result is independent of the t dependence of the energy levels, indicating that there is 
no need to average over the energy level fluctuations. Equation (4.11) has been verified by 
a numerical simulation. Expressed in terms of the parameter X, and the state labels n, m, 
our final result for the overlap probability is 

(4.12) 

which is valid in the limit 1x1 -+ CO. An identical result is obtained in the orthogonal case. 
A similar formula has been suggested by Kusnezov and Lewenkopf [lo] for the case where 
n = m, and numerical evidence supporting this result is given in [16]. 

4.2. Overlap amplitudes 

Next we consider the average of the overlap amplitude, 
ensemble of Brownian paths, we obtain 

Averaging (3.13) over the 

S(unmJe = ( ( 8 U n m ) ) e  

We can write this result in the form 

(4.13) 

(4.14) 

A simple differential equation for the partial average 
its solution is 

can be extracted from (4.14); 

(Unm(r)), = Jnm exp[-Mr)l (4.15) 

where we have used the initial condition U.,(O) = Jnm. Here the function F.(t) is 

(4.16) 

The ensemble average is obtained by integrating (4.15) over the different histones of the 
energy levels E,  ( r ) :  

( U n m ( r ) ) c  = L&xp[--Fn(r)l)d 
m 

= [ dFP[F]e-F 
Jo 

(4.17) 
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where P[F]  is the probability distribution of the integrals F,. The modal value of P[F] is 

- p 2 D r  (4.18) 

and the integral (4.17) is dominated by the modal region of the distribution of F, so that in 
the limit of large 5 

for some constants ab ,  rg. We have not been able to calculate these constants analytically. 
We confirmed (4.19) by simulating the Langevin equation (3.8) for the evolution of the 
energy levels, and calculating the average (exp[-F(r)])d. Our numerical simulations give 
the values 1y1 x 3.84 and rl x 0.8 in the orthogonal case (B = I), and a2 x 2.6, r2 x 0.9 
for the unitary case. We remark that in the orthogonal case the mean value of F does not 
exist, due to the greater probability of near degeneracies where E, 4, but this fact does 
not affect the existence of (exp(-F)). 

There is a significant difference in the interpretation of the results between the orthogonal 
and unitary cases. In the unitary case, the predictions of the Dyson model and the smooth 
parametrization (2.1) may not coincide, because the phases of the eigenfunctions I&(X)) 
depend on the path taken by the random walk in the multidimensional parameter space. 
The phases of the off-diagonal elements are determined by the connection rule (3.4), which 
is path-dependent: the difference in phase of the state I&(X)) between two paths is given 
by the integral of the curvature of the connection over a surface of which the two paths 
form the boundary [15]. The phases from different Brownian paths leading to the same 
point in the multidimensional parameter space may lead to a cancellation of the average 
of the off-diagonal matrix elements, and it is probable that in the unitary case the average 
(Unm(r)) decays more rapidly than for the smooth parametrization. In the orthogonal case, 
the connection rule (3.4) simply ensures that the wavefunction remains real, and the phase 
is the same for all paths. Only in the orthogonal case can (4.19) be applied directly to the 
the case of a smoothly parametrized Hamiltonian, implying a Gaussian decay of correlations 
in the limit 1x1 + CO: 

5. Correlations of matrix elements 

Now we will use the results of section 4 to derive information about correlations of matrix 
elements in the limit of large X. We consider the matrix elements A , , ( X )  of an arbitrary 
operator d in the basis formed by the states l $n(X) ) .  The dependence of the matrix 
elements A , , ( X )  = (@, , (X) lA(X) l@"(X) )  on the parameter X is most strongly influenced 
by the parameter dependence of the basis states; we will therefore assume that the operator 
d is independent of X. As in section 4, the results apply to the N ~+ CO limit of the random 
matrix problem. 

Following the usual approach of random mamx theory. we assume that the matrix 
elements A,,(O) are uncorrelated Gaussian random variables, with mean value zero, and 
with a variance U * ,  which can depend on E = ,$ (En + E,,,) and A E  = ( E .  - Em). In 
semiclassical systems, the variance &(I?, A E )  varies on a scale which is O@) in AZ, 
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but independent of h in the variable E [13]. For this reason, we will also simplify the 
calculation by assuming that u2 is a function of AE only. 

In the case of systems without time-reversal invariance, for which the unitary ensemble 
is an appropriate model, we will assume that the matrix elements A,,,,, have the following 
statistical properties: 

M Wilkimon and P N Walker 

(Anm(0)) = 0 (5.1) 

(A,m(0)A;,mr(O)) = Snn,Smm,gf,,, (Anm(0)An~m4W = &m&mgfm. (5.2) 

and 

In 'real' systems the off-diagonal matrix elements have mean value zero [4], but the mean 
value of the diagonal matrix elements need not be zero [ll]; our results can readily be 
extended to that case. In systems with orthogonal statistics the matrix elements are real, 
and we replace (5.2) by 

(5.3) 2 (Ann,(O)Anm,(O)) = + &cm&m,)unm . 

The matrix elements A,,(X) can be obtained from those at X = 0 using the coefficients of 
the unitary matrix Unm(X):  

It can be assumed that the matrix elements Anm(0) and U,,<X) in (5.4) are uncorrelated, 
because i is assumed to be independent of the Hamiltonian H ;  averages over the elements 
Un,(X)  and Akl(0) can therefore be separated. We now consider both of the averages 
introduced in (1.1) in turn. 

5.1. Diagonal matrix elements 

First we consider the calculation of the correlation coefficient of the diagonal matrix 
elements: 

( A , . ( X ) A d O ) )  = ~ ( ' ? , " , ( x ) ~ , , ( X ) ) , ( A k ~ ( o ) A , , , , ( o ) )  . (5.5) 
k l  

The only non-vanishing contribution is from the term k = 1 = n', which (using 
equation (4.12)) gives 

This result shows that, although the matrix elements are initially uncorrelated at X = 0, the 
elements become correlated when evaluated at different values of the parameters. These 
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correlations decay as X-' at large X .  A similar result is obtained in the orthogonal case; 
the only difference is that the result is multiplied by a factor of two. 

In many situations individual mahix elements are of little significance, but sums of 
matrix elements are related to observable properties. In the case of diagonal matrix elements 
it is natural to consider the statistic f , ( E )  defined by (1.2). The correlation function of this 
statistic, obtained by averaging over the energy E,  can be obtained from (5.6): 

We now replace the summations by integrations, and approximate Pn,, using a continuous 
function obtained from (4.12). We find, in the limit where p c  >> 1 

m P'4 
2 4 7 6  -m 

= - 1 dr P ( x ,  X )  exp[-(AE - x)'/4~']. 

The convolution theorem gives 

Kd(AE, X )  = - pa' Sm dtexp(-cZt2 - xppZXZltl - iAhEt) (5.9) 2n -- 
which can be written in terms of the complimentary error function erfc(x): 

K ~ ( A E ,  X) = -[exp(z')erfc(z) P d  + e~p(z*~)e~fc(z*)] 44% 
z = ( x p p ' x '  + iAE)/2e. (5.10) 

This result is valid when P E  >> 1. 

5.2. Off-diagonal matrix elements 

Now we consider the correlation of a pair of off-diagonal mahix elements. The unitary 
and orthogonal cases are different and we discuss them separately, starting with the unitary 
case: 

(5.11) 

We can adapt the calculation of section 4.2 to estimate the coefficient (U;nUm~m)c. Consider 
the average of the small increment in Ul,nUm.m occurring during the time interval 6t: 

(6(U,:"um.,,, = (6U,:,)u,,, + r&(6Umd + (6u:<"6Um,m) 

(5.12) 
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where equations (3.13) and (3.15) have been used to evaluate the averages. When n # m, 
the average of U;nUm,m with the energies frozen therefore obeys the rate equation 
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s (U,:" U,,, )o = -R( t )  (U;,, U," ),6r (5.13) 

where 

(5.14) 

We now follow the argument at the end of section 4.2 solving (5.13), averaging over the 
energy fluctuations, and substituting the result into @.U), we predict that the correlations 
of off-diagonal elements decay exponentially as r + 00: 

{A,,,(T)A;,~,(O)) = Sn.&, .~~ , .2 , r~  exp(-akp2Dr). (5.15) 

Here r; and a; are constants which are analogous to those introduced in (4.19), and which 
depend upon n - m. In the limit In - ml >> 1 the two sums in (5.14) are independent, and 
we will have a; --f h2, r; + rz. 

In the othogonal case we have 

(Anm(X)Anw(O)) = (On,oOm,m + O n , m O m ~ ) ~ n m  (5.16) 

and using (3.13) and (3.16) we find that 

8 ( o d n o m h  -k On'mOm%)o = -R(T)(Od,O,,m f On*mOm,n)08T 

where the rate constant is given by a slightly different expression from (5.14): 

(5.17) 

(5.18) 

Again, the argument at the end of section 4 indicates that the correlation function is an 
exponential decaying function for large t, with a different decay constant a;. In terms of 
the dependence on X ,  the decay of correlations is Gaussian in the limit r -+ 00: 

6. Semiclassical theory for diagonal matrix elements 

In this section we compare the random matrix theory prediction for the correlation function 
of the diagonal matrix elements with a semiclassical calculation, which applies to a system 
with chaotic classical motion. In the case of integrable classical motion, there is not expected 
to be any correspondence with random matrix theory. 

It is not possible to write down an expression for a given matrix element of a chaotic 
system using semiclassical methods. The best that can be achieved is to write down an 
expression involving a summation over matrix elements in a small range of energy. For 



Brownian motion model 6157 

diagonal matrix elements, the appropriate sum is given by (1.2). and we will use a Gaussian 
weight for the smoothed delta function: 

8, ( x )  = exp(-x2/2e2)/cJ2;;. (6.1) 

In the case where 2 is the identity operator, the sum (6.1) reduces to the smoothed density 
of states n(E),  for which Gutzwiller [31 has given an expression in terms of the periodic 
classical orbits of the system (which are unstable and isolated): 

n , ( ~ )  = p ( ~ )  + C u j  exp(iS,/fi) exp(-2t,2/2fiz) (6.2) 

where p ( E )  is the Weyl approximation to the density of states, and the index j labels the 
periodic orbits of the underlying classical system. Here S j ( E )  is the classical action of the 
jth periodic orbit at energy E, and wI contains information about the stability of the orbit 
and the Maslov indices. By calculating tr{.h(E - e)] using Gutzwiller’s method, this 
result is easily extended to the quantity f,(E); the result [ I l l  is 

j 

f , ( ~ )  = (A) + E a j &  exp(iSj/fi) exp(-&,2/2fi2) (6.3) 
j 

where (A) is the microcanonical average of the classical limit A(q, p)  of 
and ,ij is the time average of A(q,p) of over the periodic orbit (qj(f),pj(f)) 

at energy E ,  

- 1 ‘J 
A j  = -1 df A ( q j ( t ) , P i ( t ) ) .  (6.4) 

Because we are concemed with the fluctuation properties of f , (E) ,  we will assume that the 
term (A) vanishes. Now we consider the correlation function of f,(E) 

&(&E, x) = (fc(E+ AE. X ) f , ( E ,  @ ) E  

t j  o 

(6.5) 

where the averaze is taken over an interval of energy for which Sj, uj and t i j  are 
approximately constant. Using the periodic orbit expansion (6.4), we have 

x exp[-&$ + T:)/%’])~. (6.6) 

In the semiclassical (71 + 0) limit the term involving exp[i(Sj - Sk)/ f i ]  is highly sensitive 
to variations in the energy of the orbit and the parameter X ,  because h appears in the 
denominator of the phase. The dependence of the factors aj and . i j  on energy and X will 
therefore be neglected. Also, the A j  can be regarded as random variables! in the case of a 
system without time-reversal symmetry the double sum is dominated by the diagonal term, 
j = k ;  when there is time reversal invariance the orbits exist as symmetry related pairs. In 
the former case the correlation function can therefore be written 
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A result discussed in the appendix relates the parameter derivative of the actions of the 
periodic orbits to the parameter derivative of the Hamiltonian, integrated over the trajectory: 
it is shown that, for long periodic orbits 

M Wilkimon and P N Walker 

(exp[i (')XI) = exp[-np/l2~2r~/fi] 

where the average is with respect to long orbits with periods close to rj. For long-period 
orbits the amplitudes a, satisfy a sum rule discussed by Hannay and Ozorio de Almeida 
[17]: 

The mean value of A(¶, p )  evaluated along the periodic orbits can, in the case of long 
orbits, be related to the correlation function of A. Using a relationship between correlation 
functions and matrix elements which is discussed in [13], this can be expressed in terms of 
the mean square matxix elements of 6: 

(A:) = ~Sgd tS7 'd r 'A j ( i )Aj ( i ' )  - - Sm dr(A(i)A(O)) = 2 ~ p f i u ~ ( E ,  O)/q (6.10) 
rj 0 0 rj -m 

where d ( E ,  0) is the variance of the off-diagonal matrix elements with E ,  - E, - E .  
Using equation (6.9) to replace the summation in (6.7) by an integral, and using (6.8) and 
(6.10), we have 

&(AI?, X) = - 
Hfi 

p u z  
drexp(-6'r2/fi2) exp(-(npp2X21rl + iAEr)/fi) 

(6.11) 

z = ( ~ p p ~ X ~  + iAE)/26. 

This is identical to the random matrix result for the unitary case, equation (5.10). For 
a system with timereversal invariance, pairing the orbits with their time-reversed images 
doubles this result, in agreement with our findings for the orthogonal ensemble. 

7. Concluding remarks 

We have found a surprising difference between the correlation functions of diagonal matrix 
elements (which have correlations decaying with a power law), and off-diagonal elements 
(for which, in the orthogonal ensemble, the correlation function has a Gaussian decay). 
Also, we found that diagonal matrix elements which are uncorrelated at X = X' become 
correlated when X # X': this follows from the fact that a pair of states I@"(X')) and IGm(X)) 
which are orthogonal when X = X' overlap when X # X'. These emergent correlations are 
absent from the off-diagonal matrix elements. Our conclusions concerning the off-diagonal 
matrix elements are consistent with a model for matrix element correlations introduced in 
an earlier paper 111, which discussed a model for the dynamics of complex systems. 
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There is an extensive literature on the correlation function of dEJdX, which was 
investigated using random matrix methods by Altshuler and Simons [IS] and by Beenakker 
and Rejaei [S, 91, and using semiclassical methods by Berry and Keating [19]. The parameter 
derivative of an energy level is a diagonal matrix element (dE,/dX = (&[df?/dX]&)) but 
our results are distinct from those of these earlierpapers. This is because the matrix element 
dE,/dX is correlated with the parameteriependence of the energy levels, whereas we have 
considered the case where the operator A is unrelated to the Hamiltonian. 

We made efforts to find a correspondence between our random matrix results on the 
statistics of the off-diagonal matrix elements, and a semiclassical theory [13] for the variance 
of the off-diagonal matrix elements. In this case we could not establish a correspondence; 
we believe that this is because the existing semiclassical theory is not sufficiently refined 
to reproduce the random matrix results. 

We believe that the extension of the Dyson's approach to parametric dependencies of 
wavefunctions described in this paper will find many applications beyond those described 
in this paper. It is possible. to use these methods to calculate averages of products of four 
overlap matrix elements U,,, and we are applying this approach to correlation functions of 
transition strengths lAnmlZ and of the adiabatic curvature or Berry phase 2-form [15]. 
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Appendix. 

Goldberg er al [20] show that the parameter derivative of the action of a periodic orbit is 
related to the parameter derivative of the classical Hamiltonian as follows: 

In the limit of long periodic orbits these integrals can be assumed to have a Gaussian 
distribution. We will assume that the microcanonical average of aH/aX vanishes; the 
calculation is easily extended to the general case. For orbits which are long compared to 
the characteristic timescale for the decay of classical correlations, the variance of aSj/aX 
can be expressed in terms of the classical correlation function 

In 'the semiclassical limit the integral over the correlation function can be expressed [13] 
exactly in terms of the variance of the matrix elements for states with nearly equal energies: 
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If8 is a Gaussian distributed with mean value zero, we have (exp(i6')) = exp(-;(8')). 
Applying this to (A.4) gives 
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( e x p [ i ( g ) ~ ] )  = exp[-zu*~2t~/fi] .  
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